Strong compression of a cavitation bubble in benzol has been investigated. To describe the motion of the liquid and vapor, a mathematical model with decomposing into spherical component and a small non-spherical perturbation is used. The spherical component is described by the gas dynamics equations with the transient heat conduction, non-equilibrium evaporation-condensation at the interface and the realistic wide-range equations of state. To describe the motion of non-spherical component, the effects of viscosity, liquid surface tension and the bubble content are approximately taken into account. A shock wave has been shown to form in the bubble during its final compression stage. It has found that during compression of the bubble the growth of its nonsphericity does not exceed 180 times if the initial radius of the bubble is more than 100 m m.
кавитационный пузырек, искажение сферичности пузырька, коллапс пузырька, cavitation bubble, sphericity bubble distortion, bubble collapse
1. R.P. Taleyarkhan, C.D. West, J.S. Cho, R.T. Lahey (Jr), R.I. Nigmatulin, R.C. Block, Science, 295, 5561, 1868-1873 (2002)
2. E.M. Galimov, Nature, 243, 389-391 (1973)
3. E.M. Galimov, A.M. Kudin, V.N. Skorobogatskiy i dr., DAN, 395, 2, 187-191 (2004)
4. R.A. Kaydrikov, Ya V. Ivshin, A.I. Zil'berg, Vestnik Kazan. tehnol. un-ta, 22, 137-140 (2011)
5. Ya V. Ivshin, R.A. Kaydrikov, A.I. Zil'berg, Vestnik Kazan. tehnol. un-ta, 15, 46-48 (2012)
6. A.Yu. Dnestrovskiy, S.A. Voropaev, E.A. Ponomareva, DAN, 436, 5, 611-614 (2011)
7. A.A. Aganin, M.A. Il'gamov, R.I. Nigmatulin, D.Yu. Toporkov, Izvestiya RAN, MZhG, 1, 57-69 (2010).
8. R.I. Nigmatulin, I.Sh. Akhatov, A.S. Topolnikov, R.Kh. Bolotnova, N.K. Vakhitova, R.T. Lahey (Jr.), R. Taleyarkhan, Phys. Fluids, 17, 10, 107106 (2005).
9. R.I. Nigmatulin, Dinamika mnogofaznyh sred, t. 1 i 2. Nauka, Moskva, 1987.
10. R.H. Bolotnova, V sb. Trudy instituta mehaniki Ufimskogo nauchnogo centra RAN. Ufa, 2007. vyp. 5. S. 113-120.
11. R.H. Bolotnovoy. Diss. dokt. fiz.-mat. nauk, In-t mehaniki UNC RAN, Ufa, 2008, 312 s.
12. A. Prosperetti, Quarterly of Appl. Math., 34, 339-352 (1977).
13. H. Lin, B.D. Storey, A.J. Szeri, J. Fluid Mech., 452, 145-162 (2002).
14. A.A. Aganin, D.Yu. Toporkov, T.F. Halitova, N.A. Hismatullina, Matematicheskoe Modelirovanie, 23, 10, 82-96 (2011).
15. M. Baranaev, ZhFH, 13, 11, 1635-1641 (1939).
16. S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Krayko, G.P. Prokopov, Chislennoe reshenie mnogomernyh zadach gazovoy dinamiki. Nauka, Moskva, 1976, 400c.
17. G. Flinn, V kn. Fizicheskaya akustika, Mir, Moskva, 1967, S. 7-138.
18. M.S. Plesset, T.P. Mitchell, Quart. Appl. Math., 13, 4, 419-430 (1956).
19. G. Birkhoff, Quart. Appl. Math., 13, 451-453 (1956).