A numerical technique has been realized for computing problems of contact interaction between compressible fluids with strong deformations of the contact boundary and shock waves. It is based on the method CIP-CUP (Constrained Interpolation Profile Combined Unified Procedure). Computations are conducted on the Eulerian mesh without explicit separation of contact boundaries. Comparison of numerical solutions of some test problems with their known solutions is presented, showing operability of the created algorithm. The performance capabilities of the realized technique has been illustrated by computing problem of impact of axially-symmetric high-speed liquid jet upon a rigid wall and a thin layer of a liquid on the rigid wall.
контактная граница, сжимаемые среды, эйлерова сетка, неявное отслеживание контактной границы, метод CIP-CUP, contact interface, compressible fluids, Eulerian grid, interface capturing, CIP-CUP method
1. O.S. Dmitrieva, A.V. Dmitriev, A.N. Nikolaev, Vestnik Kazan. tehnol. un-ta, 16, 3, 63-65 (2013).
2. V.A. Alekseev, S.V. Alekseev, R.I. Nasryev, R.R. Ahmetov, Vestnik Kazan. tehnol. un-ta, 8, 182-185 (2011).
3. L.A. Crum, J. de Physique, 40, 8, C8-285 C8-288 (1979).
4. A.A. Aganin, T.S. Guseva, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, 4, 74-99 (2012).
5. S. Karni, J. Comput. Phys., 112, 1, 31-43 (1994).
6. R. Abgrall, S. Karni, J. Comp. Phys., 169, 2, 594-623 (2001).
7. T. Yabe, P.Y. Wang, J. Phys. Soc. Japan, 60, 7, 2105-2108 (1991).
8. T. Yabe, F. Xiao, T. Utsumi, J. Comput. Phys., 169, 2, 556-593 (2001).
9. F.H. Harlow, A.A. Amsden, J. Comput. Phys., 3, 1, 80-93 (1968).
10. Y. Ogata, T. Yabe, Comput. Phys. Commun., 119, 2-3, 179-193 (1999).
11. F. Xiao, Month. Weath. Rev., 128, 4, 1165-1176 (2000).
12. S. T. Zalesak, J. Comput. Phys., 31, 3, 335-362 (1979).
13. T. Yabe, F. Xiao, Computers Math. Applic., 29, 1, 15-25 (1995).
14. M. Ida, Comput. Phys. Commun., 150, 3, 300-322 (2003).
15. A.A. Aganin, M.A. Il'gamov, V.G. Malahov, T.F. Halitova, N.A. Hismatullina, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, 1, 131-146 (2011).
16. A.A. Aganin, M.A. Il'gamov, T.F. Halitova, V sb. Aktual'nye problemy mehaniki sploshnoy sredy. K 20-letiyu IMM KazNC RAN. T.1. Foliant, Kazan', 2011. C.134-146.