A titania-supported Mn oxide system made by incipient wetness impregnation method was investigated in the reaction of heterogeneous catalytic decomposition of ozone. The catalytic activity of the catalysts containing 6, 8 and 10 wt% manganese oxide was found using the decomposition coefficient γ which is proportional to ozone decomposition rate. It was established that all catalytic samples have activity towards ozone decomposition but most active was the catalyst possessing 10 wt% MnOx/TiO 2. The calculated values of γ were in the range 0.05×10 -4-0.4×10 -4. The experiments were performed in temperature range of 258 K to 313 K in a tube glass reactor. It was determined that the activation energy of the process is 11 kJ/mol.
ozone, titania, manganese oxide, decomposition, activation energy, озон, диоксид титана, оксид марганца, разложение, энергия активации
1. S. Rakovsky, G. Zaikov, Kinetic and Mechanism of Ozone Reactions with Organic and Polymeric Compounds in Liquid Phase, monograph (second edition), Nova Science Publishers Inc., New York, 2007, pp. 1-340.
2. S. T. Oyama, Chemical and Catalytic Properties of Ozone, Catal. Rev. Sci. Eng., 42, 279 (2000).
3. T. L. Brown, H. E. Lemay JR., B. E. Bursten, J. R. Burdge [1977], "22", in Nicole Folchetti Chemistry: The Central Science, 9th Edition (in English), Pearson Education, 2003, pp. 882-883.
4. B. Dhandapani, S. T. Oyama, Gas Phase Ozone Decomposition Catalysts, J. Appl. Catal. B: Environmental, 11, 129 (1997).
5. W. S. Kijlstra, D. S. Brands, E. K. Poels, A. Bliek, Mechanism of the Selective Catalytic Reduction of NO by NH3 over MnOx/Al2O3, J. Catal., 171, 208 (1997).
6. J. Ma, G. K. Chuah, S. Jaenicke, R. Gopalakrishnan, K. L. Tan, Catalysis by manganese oxide monolayers part 1: alumina and magnesia supports, Ber.Bunsenges. Phys. Chem., 100,585 (1995).
7. L. S. Puckhaber, H. Cheung, D. L. Cocke, A. CLearfield: Reactivity of copper manganese oxides, Solid State Ionics, 32/33,206 (1989).
8. R. Ghosh, Y.-C. Son, V. D. Makwana, S. L. Suib, Liquid-phase epoxidation of olefins by manganese oxide octahedral molecular sieves, Journal of Catalysis, 224,288 (2004).
9. P. Hunter, S.T. Oyama, Control of Volatile Organic Compound Emissions, Conventional and Emerging Technologies, Wiley, New York, 2000.
10. R. Radhakrishnan, S. T. Oyama, J. Chen, A. Asakura, Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide, J. Phys. Chem. B, 105 (19), 4245(2001).
11. H. Einaga, A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions, J. Hazard. Mater., 164, 1236(2008).
12. J. Lin, A. Kawai, T. Nakajima, Effective catalysts for decomposition of aqueous ozone, J. Appl. Catal. B: Environmental, 39,157 (2002).
13. M. Muruganandham, S. H. Chen, J. J. Wu, Evaluation of water treatment sludge as a catalyst for aqueous ozone decomposition, Catalysis Communications, 8,1609 (2007).
14. B. Ohtani, S. Zhang, S. Nishimoto and T. Kagiya, Catalytic and photocatalytic decomposition of ozone at room temperature over titanium (IV) oxide, J. Chem. Soc., Faraday Trans., 88,1049 (1992).
15. R. Rosal, A. Rodriguez, M. S. Gonzalo, E. Garcia-Calvo, Catalytic ozonation of naproxen and carbamazepine on titanium dioxide, J. Appl. Catal. B: Environmental, 84,48 (2008).
16. V. V. Lunin, M. P. Popovich, S. N. Tkachenko, Physical Chemistry of Ozone, Moscow University Publ. House, Moscow, 1998, pp. 377-444.
17. C. Subrahmanyam, D. Bulushev, L. Kiwi-Minsker, Dynamic Behaviour of Activated Carbon Catalysts during Ozone Decomposition at Room Temperature, J. Appl. Catal. B: Environmental, 61,98 (2005).
18. M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, St. Christoskova, D. Mehandjiev, Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs, Chem. Eng. Journal, 122,41 (2006).