The infrared spectra of the benzoyl peroxide symmetrical derivatives (4-R-PhCOO) 2 with R: NO 2 -, CF 3 -, CF 3 O-, I-, Br-, Cl-, F-, H-, CH 3 -, CH 3 O- were studied by the semiempirical methods. There is a linear relationship between the frequencies of the normal vibrations of the experimental and calculated (PM6, PDDG and AM1) spectra for this series of peroxides. The effect of the DFT level on the normal vibrations frequencies of C=O group of benzoyl peroxide was estimated. The best reproduction of these frequencies is observed in the case of BLYP calculation method with 6-311G (d, p) basis set.
benzoyl peroxide, diacyl peroxides, infrared spectra, molecular modeling, semiempirical methods, DFT-methods, перекись бензоила, диацилпероксиды, инфракрасные спектры, молекулярное моделирование, полуэмпирические методы, метод ТФП
1. M. D. Guillén, N. Cabo Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils Food Chemistry, 77, 503-510 (2002).
2. V. M. Luk’anets, V. Ya. Zhukovskij, N. S.Tsvetkov, I. M. Ginzburg, Zhurnal Teoreticheskij I Eksperimental’noj Khimii, 9, 131-134 (1973).
3. L. I. Bellamy, B. R.Connelly, A. R.Philpotts, R. L.Williams, Infrared spectra of anhydrides and peroxides Z. fur Elektrochem, 64, 563 - 566 (1960).
4. I. P. Z’at’kov, D. I. Sagaidachnyj, M. M. Zubareva, Kolebatel’nye spektry diatsyl’nyh peroksidov i perefirov (Vibrational spectra of diacyl peroxides and peresters) Universitetskoe: Minsk, 1984.
5. D. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley-Interscience: New York, 2001.
6. M. Head-Gordon, A. J. Pople, M. J. Frisch, MP2 energy evaluation by direct methods Chemical Physics Letters, 153, 503 - 506 (1988).
7. V.Catoire, R. Lesclaux, W. F. Schneider, T. J. Wallington, J. Phys. Chem, 100, 14356-14371 (1996).
8. J.Oxley, J. Smith, J. Brady, F. Dubnikova, R. Kosloff, L. Zeiri, Y. Zeir, Raman and Infrared Fingerprint Spectroscopy of Peroxide-Based Explosives Society for Applied Spectroscopy, 62, 906 - 915 (2008).
9. M. J. Frisch, G. W.Trucks, and others Gaussian, Inc., Wallingford CT, 2009.
10. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. Am. Chem. Soc, 107, 3902-3909 (1985).
11. J. J. P. Stewart, J. Mol. Model, 13, 1173-1213 (2007).
12. J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory and Comput, 4, 297-306 (2008).
13. B. Miehlich, A. Savin, H. Stoll, H. Preuss, J. Chem. Phys. Lett, 157, 200-206 (1989).
14. C. Adamo, V. Barone, J. Chem. Phys. Lett, 274, 242-250 (1997).
15. F. A. Hamprecht, A. Cohen, D. J. Tozer, N. C. Handy, J. Chem. Phys, 109, 6264-6271 (1998).
16. P. J. Wilson, T. J. Bradley, D. J. Tozer, J. Chem. Phys, 115, 9233-9242 (2001).
17. A. D. Becke, J. Chem. Phys, 98, 1372-1377 (1993).
18. Y. Zhao, D. G. Truhlar, J. Phys. Chem, A, 110, 13126-13130 (2006).
19. A. J. Cohen, N. C. Handy, Dynamic correlation Mol. Phys, 99, 607-615 (2001).
20. C. Adamo, V. Barone, J. Chem. Phys, 110, 6158-6169 (1999).
21. M. Ernzerhof, J. P. Perdew, J. Chem. Phys, 109, 3313-3320 (1998).
22. X. Xu, W. A. Goddard, Proc. Natl. Acad. Sci. USA, 101, 2673-2677 (2004).
23. V. Barone, M. Cossi, J. Phys. Chem, A, 102, R. 1995-2001 (1998).
24. www.chemcraftprog.com
25. M. Sax, R. K. McMullan, The Crystal Structure of Dihenzoyl Peroxide and the Dihedral Angle in Covalent Peroxides Acta Cryst, 22, 281-289 (1967).
26. V. L. Antonovskij, S. L. Khursan, Fizicheskaia khimia organicheskih peroksidov (Physical chemistry of organic peroxides) PTC “AKADEMKNIGA”: Moskva, 2003.