Construction and the solution of the equations of dynamics of controlled electromechanical system with golonomic and nongolonomic program constraints is considered. The modification of equations with undefined multipliers gives the possibility to obtain the asymptotic stability of integral manifold, the accordance constraint equations and stability in numerical solution.
динамика, программные связи, устойчивость, численное решение, стабилизация, уравнение, построение, система, dynamics, program communication, stability, numerical solution, stabilization, equation, construction, system
1. A.S. Galiullin, Analiticheskaya dinamika. Vyssh. shk., Moskva, 1989,264 s.
2. G. Ol'son, Dinamicheskie analogii. Per. s angl. B.L. Korobochkina. Pod red. M.A. Ayzermana, Gos. Izd. inostr. lit-ry, Moskva, 1947.
3. O.V. Shemelova, Innovacii i vysokie tehnologii XXI veka: materialy Vserossiyskoy nauchno-prakticheskoy konferencii (Nizhnekamsk, 28-30 aprelya, 2009), Nizhnekamsk, 2009, T.1, S. 219-223.
4. Richard A. Layton, Principles of analytical system dynamics. Springer-Verlag New-York, Inc., 1998, 156 p.
5. O.V. Shemelova, Vestnik RUDN, ser. Prikladn. matem. i inform., 1, 63-71 (2003).
6. O.V. Shemelova, Integrativnyy harakter sovremennogo matematicheskogo obrazovaniya: materialy Vseros. nauch.-prakt. konf. (Samara, 24-27 sentyabrya, 2007), Samara, 2007, Ch.1, S. 82-87.
7. R.G. Muharlyamov, O.V. Matuhina, Vestnik Kazanskogo tehnologicheskogo universiteta, 12, S. 220-225 (2012).
8. O.V. Matuhina, Vestnik Kazanskogo tehnologicheskogo universiteta, 11, S. 272-274, (2012).