The original problem on surface and leaky eigen modes of a weakly guiding step-index optical waveguide is considered. The original problem is reduced to a nonlinear spectral problem for the set of weakly singular boundary integral equations. We approximate the integral operator by collocation method and by Galerkin method. The convergence and quality of these numerical methods are proved by numerical experiments. The collocation method demonstrates better speed of convergence.
проекционные методы, спектральные задачи, диэлектрические волноводы, projection methods, spectral problems, dielectric waveguides
1. T.P. Horikis, Dielectric waveguides of arbitrary cross sectional shape, Applied Mathematical Modeling, 37, 7, 5080-5091, (2013).
2. J. Xiao, X. Sun, Full-vectorial mode solver for anisotropic optical waveguides using multidomain spectral collocation method, Optics Communications, 283, 14, 2835-2840 (2010).
3. E.A. Osipov, I.E. Pleschinskaya, N.B. Pleschinskiy, Vestnik Kazansk. tehnol. un-ta, 15, 3, 82-85 (2012).
4. I.L. Aleksandrova, I.E. Pleschinskaya, N.B Pleschinskiy, Vestnik Kazansk. tehnol. un-ta, 15, 7, 37-39 (2012).
5. E.M. Kartchevski, A. I. Nosich, G. W. Hanson, Mathematical analysis of the generalized natural modes of an inhomogeneous optical fiber, SIAM J. Appl. Math., 65, 6, 2033-2048 (2005).
6. E.M. Karchevskiy, A.G. Frolov, Izvestiya vuzov. Povolzhskiy region. Fiz.-mat. nauki, №1, 22-30 (2012).
7. E.M. Karchevskii, Comput. Math. Math. Phys., 39, 9, 1493-1498 (1999).
8. E.M. Karchevskii, Russian Math., (Iz. VUZ). 43, 1, 8-15 (1999).
9. B.G. Gabdulhaev, Pryamye metody resheniya singulyarnyh integral'nyh uravneniy pervogo roda. Izd-vo kazanskogo universiteta, Kazan', 1994. 288 s.
10. E.M. Karchevskiy, Matematicheskie modeli spektral'noy teorii dielektricheskih volnovodov: Uchebnoe posobie. Izd-vo kazanskogo universiteta, Kazan', 2008, 140 s.