Alterations of thermodynamic parameters of glycinin, soybean Glycine max storage 11S globulin, generated by papain limited proteolysis have been investigated. By using adiabatic scanning microcalorimetry method, denaturation thermodynamic parameters (temperature, enthalpy and free Gibbs energy) of intact and modified proteins were determined at different sodium chloride concentrations. It was determined that glycinin limited proteolysis with papain results in lower denaturation free energy of the protein, that is results in lower thermodynamic stability. The described alterations of glycinin thermodynamic parameters coincide with those of molecular parameters previously determined.
глицинин, соевые бобы, ограниченный протеолиз, папаин, термодинамическая стабильность, дифференциальная сканирующая микрокалориметрия, термодинамические параметры денатурации, glycinin, soybeans, limited proteolysis, papain, thermodynamic stability, differential scanning microcalorimetry, denaturation thermodynamic parameters
1. A.D. Shutov, H. Bäumlein Seed Proteins. Springer, Netherlands, 1999. C. 543-561.
2. J. Kinsella, D. M. Whitehead and L. G. Phillips Structure-Function Properties of Food Proteins Elsevier Science & Technology Books, Amsterdam, 1994. 271 c.
3. V. P. Bulmaga, A. D. Shutov, I. A. Vaintraub Nahtung-food., 33, 1, 25-29 (1989).
4. 4. M. B. Barać, S. P. Stanojević, S. T. Jovanović and M. B. Pešić APTEFF, 35, 1-280 (2004).
5. A.D. Shutov, J. Pineda, V. I. Senyuk, V. A. Reva, I. A. Vaintraub Eur J Biochem. 199, 3, 539-543 (1991)
6. I.A. Vaintraub Nahrung., 42, 59-60 (1998)
7. S.Y. Kim, P.S.W. Park, K.C. Rhee J.AgricFood Chem. 38,651-656 (1990).
8. W.U. Wu, N. S. Hettiarachchy, M. Qi, J. Am. Oil Chem. Soc. 75, 845-850 (1998).
9. Braudo E.E., A.N.Danilenko, P.V.Guslyannikov, G.O.Kozhevnikov, G.P.Artykova, N.A.Lapteva, L.A.Vaintraub, E.Sironi, M.Duranti Int J Biol Macromol., 39, 4-5, 174-178 (2006).
10. K.D. Schwenke, T. Henning; S. Dudek; H. Dautzenberg, A. N. Danilenko, G. O. Kozhevnikov, E. E. Braudo, INT J BIO M, 28, 2, 175-182 (2001).
11. M. Adachi, J. Kanamori, T. Masuda, K. Yagasaki, K. Kitamura, B. Mikami, S. Utsumi Proc. Natl. Acad. Sci. USA., 100, 7395-7400 (2003)
12. A.V. Polyakov, A.N. Danilenko, A.V. Krivandin, S.V. Rudakov, A.S. Rudakova, A.D. Shutov, I.G. Plaschina, G.E. Zaikov, O.N. Kuznecova Vestnik Kazanskogo Tehnologicheskogo Universiteta, 9, 184-190 (2013).
13. A.D. Shutov, A. Rudakova, S. Rudakov, I. Kakhovskaya, A. Schallau, N. Maruyama, K. Wilson J. Plant. Physiol., 169, 1227-1233 (2012)
14. P. Privalov, Methods in Molecular Biology, 490, 1-39 (2009).
15. A.D. Shutov, V.I. Senyuk, I.A. Kakhovskaya, J. Pineda Biokhimiya, 58, 174-182 (1993)
16. R. F. Itzhaki, D. M. Gill Analytical Biochemistry, 9, 4, 401-410 (1964)
17. H. J. Hinz, F. P. Schwarz Pure Appl. Chem., 73, 4, 745-759 (2001)
18. T.M. Bikbov, V. Ya. Grinberg, A. N. Danilenko, T. S. Chaika, I. A. Vaintraub, and V. B. Tolstoguzov Colloid & Polymer Sci , 261,346-358 (1983).