New simple numerical methods for solving of ordinary differential equations (ODE) were developed. The efficiency of their application in comparison with known numerical methods on examples solving of ODE chemical kinetics was showed.
обыкновенные дифференциальные уравнения, задача Коши, численные методы, приближенные вычисления, химическая кинетика, ordinary differential equations, Cauchy problem, numerical methods, approximate calculations, chemical kinetics
1. S.L. Kiperman. Osnovy himicheskoy kinetiki v geterogennom katalize. M., Himiya, 1979, 349 s.
2. V.H. Fedotov, N.I. Kol'cov, Vestnik Kazan. tehnol. un-ta, 16, 23, 7-9 (2013).
3. V.H. Fedotov, N.I. Kol'cov, Vestnik Kazan. tehnol. un-ta, 16, 23, 10-12 (2013).
4. V.H. Fedotov, N.I. Kol'cov, Vestnik Kazan. tehnol. un-ta, 16, 24, 17-21 (2013).
5. G. Korn, T. Korn. Spravochnik po matematike dlya nauchnyh rabotnikov i inzhenerov. M., Nauka, 1974, 832 s.
6. V.P. D'yakonov. Spravochnik po algoritmam i programmam na yazyke beysik dlya PEVM. M., Nauka, 1989, 242 s.
7. Dzh. Forsayt, M. Mal'kol'm, K. Mouler. Mashinnye metody matematicheskih vychisleniy. M., Mir, 1980, 280 s.
8. G.M. Fihtengol'c. Kurs differencial'nogo i integral'nogo ischisleniya, t. 1. M-L., OGIZ Gostehizdat, 1949, 690 s.
9. V.Kh. Fedotov, B.V. Alekseev, N.I. Koltsov, React. Kinet. Catal. Lett., 23, 3-4, 301-306 (1983).