In paper the fundamentals of a technique of numerical research of finite strains of the isotropic hyperelastic bodies, oriented on application FEM are stated. The first section is devoted kinematics of finite strains in the Lagrangian frame, tensors and measures of the strain, defining are entered speeds, various tensors of stress are reduced. In the second section physical parities of the hyperelastic isotropic environment are formulated, using the thermodynamics equations. In the third section it is reduced resolving the equation in a current configuration and the parities defining speed of change of a stress tensor of Koshi-Euler as linear function from a tensor of a spatial gradient of speed are output.
метод конечных элементов, конечные деформации, метрический тензор, a method of finite elements, finite strains, metric tensor
1. Golovanov A.I. Metod konechnyh elementov v mehanike deformiruemyh tverdyh tel / A.I. Golovanov, D.V. Berezhnoy. - Kazan': «DAS», 2001. - 300s.
2. Golovanov A.I. Chislennoe issledovanie bol'shih deformaciy giperuprugih materialov. Chast' 1. Kinematika i variacionnye uravneniya / A.I. Golovanov, Yu.G. Konoplev, L.U. Sultanov // Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki. - 2008. - T.150.- №1. - S.25-37.
3. Golovanov A.I. Chislennoe issledovanie bol'shih deformaciy giperuprugih materialov. Chast' 2. Fizicheskie sootnosheniya / A.I. Golovanov, Yu.G. Konoplev, L.U. Sultanov // Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki. - 2008. - T.150.- №1. - S.25-37.
4. Golovanov A.I. Chislennoe issledovanie bol'shih deformaciy giperuprugih materialov. Chast' 3. Postanovka zadachi i algoritmy resheniya / A.I. Golovanov, Yu.G. Konoplev, L.U. Sultanov // Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki. - 2009. - T.151.- №1.
5. Golovanov A.I. Matematicheskie modeli vychislitel'noy nelineynoy mehaniki deformiruemyh sred / A.I. Golovanov, L.U. Sultanov. - Kazan': Kazan. gos. un-t., 2009. - 465 s.
6. Grin A. Bol'shie uprugie deformacii i nelineynaya mehanika sploshnoy sredy / A. Grin, D. Adkins - M.: Mir. - 1965. - 455 s.
7. Eliseev V.V. Mehanika uprugih tel / V.V. Eliseev. - S.-Peterburg, SPbGTU, 1999. - 341 s.
8. Korneev S.A. Termodinamicheski soglasovannye uravneniya sostoyaniya nelineynoy teorii uprugosti / S.A. Korneev // Izv. RAN. MTT. - 2003, №2, S. 71-82.
9. Perelygin, O.A. Issledovanie prochnosti cilindricheskih obolochek pri nalichii uvoda ili smescheniya kromok svarnyh shvov / O.A. Perelygin, N.M. Tuykin, D.V. Berezhnoy, M.N. Serazutdinov // Vestnik KGTU, Kazan', izd-vo KGTU. - 2001. - №1-2. - S.77-79.
10. Korobeynikov S.N. Nelineynoe deformirovanie tverdyh tel / S.N. Korobeynikov // Novosibirsk SO RAN, 2000. - 262 s.
11. Kuznecova V.G. Effekt ucheta slaboy szhimaemosti materiala v uprugih zadachah s konechnymi deformaciyami / V.G. Kuznecova, A.A. Rogovoy // Izv. RAN. MTT. - 1999, №4, S. 64-76.
12. Valiullin, A.H. Bol'shie deformacii i peremescheniya kompozitnoy cilindricheskoy obolochki / A.H. Valiullin // Vestnik KGTU, Kazan', izd-vo KGTU. - 2011. - №9. - S.109-117.
13. Lur'e A.I. Nelineynaya teoriya uprugosti / A.I. Lur'e. - M.: Nauka, 1980. - 512 s.
14. Mal'kov V.M. Nelineynyy zakon uprugosti dlya tenzora uslovnyh napryazheniy i gradienta deformacii / V.M. Mal'kov // Izv. RAN. MTT. - 1998, №1, S. 91-98.
15. Oden D. Konechnye elementy v nelineynoy mehanike sploshnyh sred / D. Oden. - M.: Mir, 1976. - 464 s.
16. Chernyh K.F. Nelineynaya teoriya uprugosti v mashinostroitel'nyh raschetah / K.F. Chernyh. - L.: Mashinostroenie, 1986. - 336 s.
17. Golovanov A.I. «Nelineynaya zadacha o giperuprugom deformirovanii polilineynogo konechnogo elementa obolochki sredney tolschiny» / A.I. Golovanov, M.K. Sagdatullin // Izvestiya vysshih uchebnyh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki. - 2010. - №4 (16). - S. 39-49.