Minimization of power expenses of modelled process is provided with two qualitatively various sets of arguments of a functional of Lagrang: for one set there are no boundary conditions, components of other set identically satisfy to the set boundary conditions.
минимизация энергетических затрат, процесс «деформация-напряжение», математическая модель, кинематическая возможность, minimization of power expenses, process "deformation tension", mathematical model, kinematic possibility
1. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 11, 65-68, (2012).
2. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 12, 107-110, (2012).
3. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 12, 111-114, (2012).
4. N.N.Reno, A.K.Safiullina. Vestnik Kaz. tehnol. un-ta, 22, 151-154, (2012).
5. N.N.Reno, A.K.Safiullina. Vestnik Kaz. tehnol. un-ta, 22, 144-146, (2012).
6. Lagranzh Zhozef Lui, 1736 - 1936: Sb. statey k 200-letiyu so dnya rozhdeniya. Izd-vo AN SSSR, Moskva-Leningrad, 1937. 220s.
7. L.I. Sedov. Mehanika sploshnoy sredy: v 2 t. T.1. Nauka, Moskva, 1970. 492s.
8. V. Novackiy. Teoriya uprugosti: per s polsk. Mir, Moskva., 1975. 864s.
9. Dzh. Meyz. Teoriya i zadachi mehaniki sploshnyh sred: per. s angl. Mir, Moskva, 1974, 318s.
10. Vasidzu K. Variacionnye metody v teorii uprugosti i plastichnosti: per. s angl. Mir, Moskva. 1987. 542s.
11. R.R. Gubaev, S.V Ananikov, M.K. Gimaleev. Tehnologiya variacionnogo modelirovaniya na primere minimizacii energeticheskih zatrat izotermicheskogo processa «deformaciya-napryazhenie». Izd-vo Kazan. gos. tehnol. un-ta, Kazan', 2009, 300s.
12. R.R. Gubaev. Tehnologiya variacionnyh modeley na primere minimizacii energeticheskih zatrat izotermicheskogo processa «deformaciya-napryazhenie». Izd-vo Kazan. NITU, Kazan', 2011, 297s.