VARIACIONNAYA ZADACHA DLYA ODNOMERNOGO PROCESSA «DEFORMACIYA-NAPRYAZHENIE»
Abstract and keywords
Abstract (English):
If boundary conditions for argument of a functional of Lagranzha are absent, possibility for achievement of a minimum of power expenses is provided with balance of modelled process. Thus stationary functions of a functional of Lagrang differ on uncertain any constant, and its stationary size doesn't depend on this constant.

Keywords:
минимизация энергозатрат, математическая модель, функционал Лагранжа, вариация перемещений, кинематическая граница, стационарность функционала, minimization of energy consumption, mathematical model, functional of Lagrang, variation of movings, kinematic border, functional extremum
References

1. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 11, 65-68, (2012).

2. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 12, 107-110, (2012).

3. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 12, 111-114, (2012).

4. N.N.Reno, A.K.Safiullina. Vestnik Kaz. tehnol. un-ta, 22, 151-154, (2012).

5. N.N.Reno, A.K.Safiullina. Vestnik Kaz. tehnol. un-ta, 22, 144-146, (2012).

6. R.R. Gubaev, S.V. Ananikov, M.K. Gimaleev. Tehnologiya variacionnogo modelirovaniya na primere minimizacii energeticheskih zatrat izotermicheskogo processa «deformaciya-napryazhenie». Izd-vo Kazan. gos. tehnol. un-ta, Kazan', 2009, 300s.

7. Berdichevskiy V.L. Variacionnye principy mehaniki sploshnoy sredy. Nauka. Glavnaya redakciya fiziko-matematicheskoy literatury, Moskva, 1983. 448s.

8. R. Kurant, D. Gil'bert. Metody matematicheskoy fiziki: per. s nem.v 2 t. T.1. Gostehizdat, Moskva-Leningrad, 1933. 525s.

9. N.P. Abovskiy, N.P. Andreev, A.P. Deruga. Variacionnye principy teorii uprugosti i teorii obolochek. Nauka, Moskva, 1978. 287s.

10. R.R. Gubaev. Tehnologiya variacionnyh modeley na primere minimizacii energeticheskih zatrat izotermicheskogo processa

Login or Create
* Forgot password?