The possibility of describing the chaotic dynamics of one-dimensional ordinary differential equations (ODE) was investigated. The technique of obtaining these ODE, as well as one-dimensional nonlinear invariants and the results of numerical studies is given. To prove the existence of chaos Lyapunov exponents were calculated and used some of the exact analytical solutions of the ODE.
одномерные динамические системы, хаотические режимы, инварианты, показатели Ляпунова, one-dimensional dynamical systems, chaotic regimes, invariants, Lyapunov exponents
1. E.N. Lorenz, Journal of Atmospheric Science, 20, 130-141 (1963).
2. A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Mayer, Kachestvennaya teoriya dinamicheskih sistem vtorogo poryadka, Nauka, Moskva, 1966. 568 s.
3. A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Mayer, Teoriya bifurkaciy dinamicheskih sistem na ploskosti, Nauka, Moskva, 1967. 384 s.
4. A.P. Kuznecov, A.V. Savin, L.V.Tyuryukina, Vvedenie v fiziku nelineynyh otobrazheniy, Nauchnaya kniga, Saratov, 2010. 134 s.
5. D.D. Dixon, F.W. Cummings, P.E. Kaus, Phys. Nonlinear Phenom, 65, 109-116 (1993).
6. V.H. Fedotov, N.I. Kol'cov, Vestnik Kazan. tehnol. un-ta (2014), v pechati.
7. V.H. Fedotov, N.I. Kol'cov, Vestnik Kazan. tehnol. un-ta, 16, 23, 7-9 (2013).
8. V.H. Fedotov, N.I. Kol'cov, Vestnik Kazan. tehnol. un-ta, 16, 23, 10-12 (2013).