If boundary conditions for argument of a functional of Lagrang are set, it means that the volume in which modelled process proceeds, is fixed by the external relations forming these boundary conditions. The set of arguments of a functional of Lagrang which are identically satisfying set boundary conditions, allows to find such functions on which the power of the process modelled by this functional, can reach a minimum.
минимизация энергозатрат, математическая модель, функционал Лагранжа, вариация перемещений, кинематическая граница, стационарность функционала, minimization of energy consumption, mathematical model, functional of Lagrang, variation of movings, kinematic border, functional extremum
1. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 11, 65-68, (2012).
2. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 12, 107-110, (2012).
3. R.R. Gubaev, M.K. Gimaleev, A.K. Safiullina. Vestnik Kaz. tehnol. un-ta, 12, 111-114, (2012).
4. R.R.Gubaev. Izv.vuzov. Aviacionnaya tehnika. №2. 66 - 68 (2008). R.R. Gubaev. Russian Aeronautics. 51, 2. 205-208 (2008).
5. R.Kurant, D.Gil'bert. Metody matematicheskoy fiziki: per. s nem.v 2 t. T.1. Gostehizdat, Moskva-Leningrad, 1933. 525s.
6. N.P. Abovskiy, N.P. Andreev, A.P. Deruga. Variacionnye principy teorii uprugosti i teorii obolochek. Nauka, Moskva, 1978. 287s.